Physician-Scientist • Oncologist • AI Innovator
MD, MPH
Advancing human health through the convergence of medicine, data science, and artificial intelligence.
Dr. Sean Khozin is a physician-scientist and oncologist, internationally recognized for his leadership in leveraging data science, AI, machine learning, and real-world evidence to drive innovation in biomedical research, with a particular emphasis on oncology drug development.
A founding member of the FDA Oncology Center of Excellence, Dr. Khozin escaped the revolution in Iran and found his way to the United States, harmonizing his passion for patients and data into a career spanning startups, the FDA, Johnson & Johnson, and pioneering AI ventures — all while pursuing his love of music.
His work bridges the gap between cutting-edge technology and clinical care, with a focus on harnessing advanced analytics and AI to accelerate drug discovery, optimize therapeutic development, and improve patient outcomes.
Chief Executive Officer
Directing public health programs and pioneering initiatives focused on the development of AI foundation models in oncology.
Founder
Subsidiary of Phyusion
Advancing innovations at the nexus of biology, technology, and AI to accelerate drug discovery and optimize therapeutic development.
Research Affiliate
Focusing on novel applications of AI and machine learning technologies to accelerate drug discovery and optimize therapeutic development strategies.
Host
A podcast from the CEO Roundtable on Cancer, examining the hard problems in oncology and exploring practical solutions that connect science to patient impact.
A podcast from the CEO Roundtable on Cancer
Examining the hard problems in oncology and exploring practical solutions that connect science to patient impact. Each episode brings together leading voices in cancer research, drug development, and health policy to discuss what's working, what's not, and what comes next.
Directing public health programs and pioneering AI foundation model initiatives in oncology.
Novel applications of AI/ML to accelerate drug discovery and optimize therapeutic development.
Led the restructuring and acquisition of the precision oncology enterprise leveraging real-world data and analytics.
Implemented cutting-edge data science solutions supporting the development of innovative medicines and vaccines.
Established the FDA's first data science and technology incubator under special federal authorities.
Helped build and launch the FDA's Oncology Center of Excellence, shaping the agency's approach to oncology drug regulation and review.
Conducted clinical research in oncology at the U.S. National Cancer Institute.
Pioneering TechBio company developing telemedicine, point-of-care data visualization, and advanced analytical systems.
Board-certified oncologist. Fellowship training following internal medicine residency.
Doctor of Medicine, University of Maryland School of Medicine. Master of Public Health, George Washington University. BS, University of Maryland.
Information Exchange and Data Transformation (INFORMED) was launched in 2015 at the U.S. FDA with special authorities from the Department of Health and Human Services.
As a technology and data science incubator, INFORMED was designed as a public-private collaboration sandbox to de-risk innovations with transformative potential in biomedical research and therapeutic development.
The effort was instrumental in establishing the foundation for the use of real-world evidence, digital health solutions, and AI/ML in drug development and regulatory decision making.
Pioneered frameworks for integrating real-world data into regulatory decision making.
Advanced digital health solutions including smart devices and decentralized clinical trials.
Established foundations for AI/ML adoption across the product life cycle.
Dr. Khozin's research spans regulatory science, clinical trial methodology, and data science, with a focus on modernizing how evidence is generated and applied in cancer drug development.
As a clinical investigator at the National Cancer Institute, Dr. Khozin conducted clinical research in thoracic oncology and rare tumors, contributing to early-phase trials of molecularly targeted agents and novel combination regimens in lung cancer and thymic epithelial tumors. This work included studies of IGF-1R-targeted therapy in thymoma, survivin suppression in NSCLC, the identification of ALK rearrangements in rare lung cancer histologies, characterization of germline EGFR T790M mutations, and the use of FDG-PET imaging as a predictive and prognostic tool in thymic malignancies. At the FDA, Dr. Khozin served as lead medical reviewer on several landmark accelerated and regular approvals that defined the modern paradigm of biomarker-driven oncology, including ceritinib (ALK-positive NSCLC), erlotinib (EGFR-mutant NSCLC), osimertinib (EGFR T790M NSCLC), and atezolizumab (metastatic NSCLC).
Dr. Khozin's research established foundational methods for using electronic health records and other real-world data sources to construct validated endpoints, develop external control arms, and inform regulatory decision-making in oncology. This work, conducted primarily at the FDA's Oncology Center of Excellence, demonstrated that real-world endpoints correlate meaningfully with overall survival and are feasible at scale. More recent work has advanced hybrid trial designs combining randomization with external data, methods for reducing disparities in clinical trial interpretation, and frameworks for RWE use in treatment decision-making.
Dr. Khozin's work in AI spans foundation models for oncology, LLM-based clinical trial data analysis, and regulatory frameworks for AI/ML adoption across the product life cycle. At the FDA, he established INFORMED, the agency's first data science and technology incubator, which laid the groundwork for AI and digital health integration in drug development. Current initiatives include AutoRECIST and the Total Tumor Burden Index (TTBI), both launched by Dr. Khozin to address fundamental measurement problems in how tumors are assessed in clinical trials. A meta-analysis Dr. Khozin conducted at the FDA, spanning 14,000 patients across registration trials, revealed that two radiologists reviewing the same scans agreed on tumor response classification only 70% of the time, with discordance reaching 45% in ovarian and pancreatic cancers, and extreme cases where one reader assessed complete response while the other assessed progressive disease on the same patient. AutoRECIST applies AI to automate and standardize tumor response assessment, eliminating this inter-reader variability. TTBI, developed in collaboration with SAS Institute, replaces conventional categorical RECIST endpoints with a continuous volumetric measure of total disease burden, integrating 3D tumor segmentation across all lesions for earlier and more granular detection of treatment effect.
Featured Essay
The Confluence of Math, Music, and Medicine
How physiological state changes can be represented musically — the composition Perpetual Drift proposes that transitions in human physiology, detectable through computational methods, can also be heard as shifts in tonality and dissonance.
Read on Substack →Interested in collaborating on research, speaking engagements, or advancing AI-driven innovation in healthcare?